
Experience with Parallel Computers at NASA Ames
David H. Bailey

November 14, 1991
Ref: Intl. J. of High Speed Computing, vol. 5, no. 1 (993), pg. 51{62.

Abstract
Beginning in 1988, the Numerical Aerodynamic Simulation (NAS) organization at

NASA Ames Research Center has studied the usability of highly parallel computers on
computational uid dynamics and other aerophysics applications. Presently this organi-
zation operates a CM-2 with 32,768 nodes and an Intel iPSC/860 with 128 nodes. This
note gives an overview of the experience in using these systems, highlights both strong
points and weak points of each, and discusses what improvements will be required in fu-
ture highly parallel systems in order that they can gain acceptance in the mainstream of
scienti�c computing.

The author is with the NAS Applied Research Branch at NASA Ames Research Center,
Mo�ett Field, CA 94035.

1



Introduction
NASA Ames Research Center has long been a trail blazer in the �eld of high perfor-

mance scienti�c computation, particularly for computational uid dynamics (CFD) and
other aerophysics applications. Back in the 1970s NASA Ames was the home of the Illiac
IV, which featured a peak performance of approximately 250 MFLOPS. In 1982, NASA
Ames took delivery of the �rst two processor Cray X-MP, which featured a peak perfor-
mance of nearly 400 MFLOPS. In 1986 the newly formed Numerical Aerodynamic Simu-
lation (NAS) organization at NASA Ames installed the �rst full-memory Cray-2, with a
peak performance of 1.6 GFLOPS. Most recently, the NAS facility added in 1988 a Cray
Y-MP with a peak performance of 2.6 GFLOPS.

By the late 1980s it became clear that the \classical" supercomputer design epitomized
by existing Cray systems was approaching maturity, and that highly parallel computer
systems had the most potential for achieving multi-TFLOPS levels of sustained perfor-
mance, which we project will be required before the end of the decade. In order to better
understand these systems and to help advance this technology to the level required for
mainstream supercomputing, the NAS Applied Research Branch was organized in 1988.
Scientists in this organization and its a�liates port application programs to parallel com-
puters, develop new algorithms and programming techniques, and study the performance
of the resulting implementations [1, 2, 3, 4, 6, 7, 8, 9, 10 and 12]. The scope and diversity
of these projects can be seen by the partial listing in Table 1.

The NAS project now operates a Connection Machine 2 (CM-2) by Thinking Machines,
Inc. and an iPSC/860 by Intel Scienti�c Computers. There are plans to acquire signi�-
cantly more powerful systems in the future. As of this date, the CM-2 has been operational
for nearly three years and the iPSC/860 for over one year. This note gives a brief sum-
mary of our experience and highlights both the strengths and the weaknesses that we have
observed in these two systems. Requirements and recommendations for future systems are
then outlined.

The Connection Machine
The NAS CM-2, obtained in collaboration with the Defense Advanced Projects Re-

search Association (DARPA), was installed in 1988 with 32,768 bit-serial processors. Re-
cently it was upgraded with 1024 64-bit oating point hardware and four gigabytes of
main memory, or about twice that of the NAS Cray-2. The system also now has the \slice-
wise" Fortran compiler, which treats the hardware as a SIMD array of 64-bit oating point
processing units.

For the �rst year or two, most applications on the CM-2 were coded in *LISP, an ex-
tension of the LISP language for parallel processing. More recently, however, programmers
have started using the CM Fortran language, which is based on Fortran-90 [5]. CM Fortran
has been plagued by delays, and version 1.0 was just recently made available.

One notable achievement on the CM-2 is the porting of a variation of the NASA Ames
\ARC3D" code. This is a three dimensional implicit Navier-Stokes uid dynamics appli-
cation and employs a number of state of the art techniques. On a 64 � 64 � 32 grid, this

2



Project Researchers Y-MP CM-2 iPSC

Multigrid (NAS benchmark) Frederickson, Barszcz x x x
Conj. gradient (NAS benchmark) Schreiber, Simon x x x
3D FFT PDE (NAS benchmark) Bailey, Frederickson x x x
Integer sort (NAS benchmark) Dagum x x x
LU solver (NAS benchmark) Fatoohi, Venkatakrishnan x x x
Scalar penta. (NAS benchmark) Barszcz, Weeratunga x x x
Block tridiag. (NAS benchmark) Barszcz, Weeratunga x x x
INS3D (incomp. Navier Stokes) Fatoohi, Yoon x x x
Isotropic turbulence simulation Wray, Rogallo x x x
PSIM3 (particle method) McDonald x x
PSICM (particle method) Dagum x
F3D (ARC3D multi-zone) Barszcz, Chawala,

Weeratunga x x
CM3D (ARC3D derivative) Levit, Jesperson x x
ARC2D Weeratunga x
Unstructured Euler solver Hammond, Barth,

Venkatakrishnan x x
Unstructured partitioning Simon x
High precision vortex analysis Bailey, Krasny x

Table 1: Overview of Parallel CFD Research at NASA Ames

3



code now runs at 190 MFLOPS on 16,384 processors [8]. The equivalent one processor
Y-MP rate for this code is 128 MFLOPS.

The strongest positive feature of the CM-2, from our perspective, is TMC's adoption of a
programming language based on Fortran-90. Some have questioned whether the Fortran-90
array constructs are su�ciently powerful to encompass a large fraction of modern scienti�c
computation. Basically, this is the same as the question of to what extent the data parallel
programming model encompasses modern scienti�c computation. While we cannot speak
for other facilities, it seems clear that a very large fraction of our applications can be
coded e�ectively using this model. Even some applications, such as unstructured grid
computations, which appeared at �rst to be inappropriate for data parallel computation,
have subsequently been successfully ported to the CM-2, although di�erent data structures
and implementations techniques have been required [6].

Another positive feature of the CM-2 is that its system software is relatively stable.
It appears to be largely free of the frequent system \crashes" and other di�culties that
plague some other highly parallel systems.

One weak point of the CM-2 is that it was not designed from the beginning for oating
point computation, and the oating point processors now in the system have been incor-
porated in a somewhat inelegant fashion. While this has been remedied somewhat with
the recent hardware upgrade and the \slicewise" software, the limited bandwidth between
oating point processors and the associated main memory modules remains a problem.
Related to this is the limited bandwidth between nodes. Even when using the hyper-
cube network, data cannot be transferred between nodes at a rate commensurate with the
oating point computation rate. And when the \router" (an alternate hardware facility
for irregular communication) must be used, the performance of the code often drops to
workstation levels.

Another weakness of the CM-2 design is that until recently no more than four users
could be using the system at a given time, which is too restrictive for daytime operation
when scientists are developing and debugging their codes. This restriction stems from the
fact that the hardware cannot be partitioned any �ner than a 8,192 node section. This
di�culty has been remedied by the introduction of time sharing software that allows more
than one job to be executing in a given sector of the CM-2. However, the down side of this
solution is that individual jobs must occupy more processing nodes than necessary, and
thus their performance is reduced accordingly.

The principal weakness with the CM-2 at the present time, however, is the CM Fortran
compiler, which still has a number of bugs and frequently delivers disappointing perfor-
mance. Also, the array intrinsic functions are in several cases rather ine�cient. Partly
this is due to the fact that writing an e�ective Fortran-90 compiler, including e�cient
array intrinsics, has proved to be much more of a challenge than originally anticipated.
Other vendors attempting to write Fortran-90 compilers are reported to be having similar
di�culties. In any event, clearly the CM Fortran compiler must be further improved.

The weaknesses of the current version of the CM Fortran compiler, coupled with the
massively parallel design of the hardware, result in a system that is often very sensitive to

4



the algorithm and implementation technique selected. It is not unusual for a reasonably
well conceived and well written code to deliver single digit MFLOPS performance rates
when �rst executed. Often the programmer must try quite a number of di�erent parallel
algorithms and implementation schemes before �nding one that delivers respectable perfor-
mance. Experienced CM-2 programmers have learned numerous \tricks" that can improve
performance, but until recently TMC provided very little documentation available on these
\tricks".

The Intel iPSC/860
The NAS Intel iPSC/860 system, which was one of the �rst two of these systems shipped

by Intel, was installed in January 1990. It has 128 nodes, each of which contains a 40 MHz
i860 processor (with a 64-bit peak performance rate of 60 MFLOPS) and 8 megabytes
of memory. The complete system has one gigabyte of memory and a theoretical peak
performance of roughly seven GFLOPS.

Programs for the Intel system may be coded in either Fortran or C, although most
scientists have chosen Fortran. At �rst, the available compilers did not utilize many of
the advanced features of the i860, and so single node performance was predictably poor,
typically only one or two MFLOPS. More importantly, compile/link times were very long,
typically 30 minutes for a 5,000 line program. Recently Intel made available some new
Fortran and C compilers that were produced by the Portland Group. While the initial
release of these compilers did not feature signi�cantly faster execution speeds, at least the
compile/link speeds were much better. Further, the Portland Group's i860 compilers are
now available on Sun-4 and Silicon Graphics workstations, and running them o�-line in
this manner has further reduced compile/link times by more than a factor of ten.

The highest performance rate achieved so far on our iPSC/860 system is 1.6 GFLOPS
(32-bit), which has been obtained on an isotropic turbulence simulation program. This
code was written in the Vectoral language by Alan Wray and Robert Rogallo and features
an assembly-coded fast Fourier transform kernel [12]. This project required approximately
two person years of e�ort, including the time required byWray to port his Vectoral language
to the i860.

One signi�cant advantage of the Intel system is that it is fairly easy to obtain moderately
respectable performance using the system. In our experience, almost all codes that have
employed reasonably well conceived algorithms have achieved at least 100 MFLOPS (64-
bit) on 128 nodes, and many run at signi�cantly higher rates. Another advantage of the
Intel system is that the 128 nodes can be decomposed rather exibly among multiple users
for debugging and program development. Currently up to ten subcubes can be allocated,
but there is no fundamental reason that more could not be allowed.

One weakness of the current system is that single node performance is disappointing,
even with 40 MHz processors and the Portland Group compilers. Most Fortran codes only
run at 4 or 5 MFLOPS. Since the peak performance of the i860 is 60 MFLOPS (64-bit),
there is ample room for improvement here. However, from our analyses [7] we do not expect
more than about 8 to 10 MFLOPS per node on most Fortran codes even with the best

5



Fortran compiler, due mainly to the somewhat limited bandwidth between main memory
and the i860 processor. We have found that the 8 kilobyte on-chip data cache in the i860 is
too small to signi�cantly improve performance on most codes. A much larger cache would
de�nitely help, but improved main memory bandwidth would be more valuable for the
main body of Fortran scienti�c codes.

Once the Fortran compiler has been improved, the limited bandwidth of the current
interprocessor network will loom as a serious performance bottleneck. Obviously Intel rec-
ognizes this problem, and the new Touchstone Delta system just installed at CalTech fea-
tures a grid network with signi�cantly higher bandwidth. Studies are currently in progress
on the Delta system to determine whether this new design has alleviated this performance
bottleneck.

Needless to say, programmers are not pleased that only low-level communications and
synchronization primitives are available on the Intel system. Programmers who have
worked on the CM-2 in particular complain about having to manually decompose ar-
rays, synchronize operations and communicate data. While a Fortran-90 multiprocessor
compiler is probably the best long-term answer, work in progress on \Fortran-D" at Rice
University and elsewhere may provide programmers with help in the short term.

However, the most annoying drawback of the current system is the instability of the
operating system. Even one year after installation, it is not unusual for the system to
have to be rebooted three or four times in a single day. These frequent \crashes" are
discouraging even to the most determined and fearless programmers. Related to this
problem is the equally serious drawback of a weak front end system, which is basically a
386 personal computer. Fortunately, with the new workstation-based compilers, users do
not have to compile and link on the front-end system anymore. But this system is clearly
not designed to accommodate numerous interactive users, and future versions of the iPSC
must include much more powerful service facilities.

NAS Parallel Benchmark Results
It is well known that existing supercomputer benchmarks and benchmarking method-

ologies are poorly suited for studying the performance of these new highly parallel scienti�c
computers. For one thing, the rigid tuning requirements of many of the well-known bench-
mark programs pretty well rule out the usage of many widely used parallel programming
constructs. One could assume the existence of automatic tools for converting \dusty deck"
Fortran codes to run on highly parallel computers, but such tools simply do not now exist.
Another problem with many conventional benchmarks is that the problem sizes are inap-
propriately small for the new highly parallel systems. Finally, most existing benchmarks
employ data structures and implementation techniques that are inappropriate for parallel
systems.

In an attempt to remedy these di�culties, researchers in the NAS Applied Research
Branch at NASA Ames, the NAS Systems Development Branch and the Research Institute
for Advanced Computer Science (RIACS) have developed the NAS Parallel Benchmarks
[1, 2]. These benchmarks are a collection of eight problems that are completely speci�ed

6



Problem Y-MP CM-2 iPSC/860
Benchmark Size 8 32K 128

Embarrassingly Parallel 228 1399 659 362
Multigrid 2563 2706 308 824
Conjugate Gradient 2 � 106 631 104 70
3-D FFT PDE 2562 � 128 1795 414 696
LU solver 643 1705 186 224
Scalar penta. solver 643 1822 109 �122
Block tridiagonal solver 643 1554 94 �199

Table 2: NPB Performance Results (MFLOPS)

in \pencil and paper" fashion in a technical document [1]. Even the input data is com-
pletely speci�ed in this document. Implementations must be based on Fortran-77 or C,
but a wide range of parallel constructs are allowed. With a few exceptions, assembly code
and assembly language subroutines are not allowed for performing computations, although
vendor-supported assembly language subroutines may be invoked to perform communica-
tion and synchronization operations. Aside from these restrictions, benchmarkers are free
to select algorithms, implementation techniques and language constructs deemed to be the
most advantageous for implementing the benchmarks on a given system.

The NAS Parallel Benchmarks have been implemented on the parallel computers at
NAS, as well as on other systems by other researchers. While e�orts are still being made
to optimize these implementations, some results are available, which are shown in Table 2.
These MFLOPS performance rates are based on single processor oating point operation
counts. The Intel results for the last three lines noted with � denote runs made on only 64
nodes. For explanations of the various benchmarks, see [1] or [2].

When we compare the performance rates that we have achieved with these benchmarks
on the parallel systems with the levels achieved on the Cray, the results are somewhat
disappointing | the parallel codes typically run at the equivalent of one or two Y-MP
processors. When one computes the ratio of sustained performance to peak performance,
the results are even more striking: typically 1% to 5% for the CM-2 and the iPSC/860,
as compared with 30% to 60% for the Y-MP. It is true that the Cray Y-MP system is
signi�cantly more expensive than the parallel systems. But when one computes sustained
performance per dollar, the �gures for the iPSC/860 and the CM-2 are not dramatically
higher than the Cray as one might expect, but instead are roughly on a par with the Cray
�gures.

It is widely believed in the �eld of parallel computing that the key to obtaining high per-
formance is to employ \more suitable algorithms" on the parallel computers. \More suit-
able algorithms" often means comparatively elementary algorithms, such as direct meth-

7



Solver Floating Point CPU Time
Algorithm Operations (Secs.) MFLOPS
Jacobi 3:82 � 1012 2124 1800
Gauss-Seidel 1:21 � 1012 885 1365
Least Squares 2:59 � 1011 185 1400
Multigrid 2:13 � 1009 6.7 318

Table 3: NCUBE-2 Performance on a Convection-Di�usion Problem

ods for solving PDEs, which require only nearest-neighbor communication and thus give
higher MFLOPS performance rates than more advanced algorithms, such as implicit meth-
ods, which require long-distance communication. Often overlooked is the fact that these
nearest-neighbor algorithms are typically much less numerically e�cient than the more
advanced algorithms. Although the work of NASA Ames researchers has amply con�rmed
this principle, it can most vividly be seen from some results due to Shadid and Tuminaro
[11] of Sandia National Labs, which are reproduced in Table 3.

Note that while the MFLOPS rate of the Jacobi scheme is nearly six times that of
the multigrid-based solver on this problem, the Jacobi scheme requires 300 times as much
CPU time to complete the solution. These results and others underscore what should be
obvious: the fundamental numerical e�ciency of an algorithm is much more important
than its appropriateness for a particular architecture. Or in other words, if one employs
an algorithm on a parallel computer that has a signi�cantly higher operation count than
the best known serial algorithm for that purpose, whatever cost-performance advantage
the parallel computer has might well be nulli�ed.

Conclusions
While we are still basically optimistic that highly parallel computers are the wave of

the future, it is clear that some improvements must be made from the current designs.
First of all, parallel vendors need to recognize that most real scienti�c oating point com-
putation, and certainly scienti�c computation at our facility, is characterized by a ratio of
oating point operations to main memory references of approximately unity. What this
means is that systems cannot rely solely on large register or cache utilization ratios to
obtain respectable performance rates, and that improved bandwidth between processors
and main memory is essential. It also means that oating point processors must deliver
good performance on computations with nonunit strides.

Secondly, it is an unpleasant fact of the state of the art in computational uid dynamics,
as well as in many other numerical applications, that the demanding problems that have
the most research interest involve implicit numerical solvers or other schemes that require
substantial long distance communication. Also, arrays often must be accessed in each of
three dimensions. In short, the data communication patterns of advanced algorithms, both
within a single node and between nodes, are typically nonlocal. The message for parallel

8



computer designers is clear: these systems must be designed with su�cient internode
bandwidth, among other things, so that advanced implicit algorithms, as well as other
numerically e�cient algorithms, can be e�ectively executed.

Thirdly, we are now convinced that for a majority of all scienti�c applications, and for a
large majority of our applications, the Fortran-90 language [4] (particularly the Fortran-90
array constructs) will be the language of choice, and vendors must support this language
for multiprocessor computation, not just on a single node. Many scientists have told us
that their chief reservation of porting codes to parallel computers is the prospect that their
code will no longer run on other systems. Once Fortran-90 is o�cially adopted, which is
now expected soon, scientists should be much more open to recasting their codes into this
language. Already Cray, for one, has enhanced its Fortran compiler to accept many of the
Fortran-90 array constructs, and scientists at our facility now use the Crays in their e�orts
to port codes to the CM-2.

It may be too much to expect that future parallel computer systems will deliver re-
spectable performance from arbitrary Fortran-90 programs. For example, it is question-
able that interconnection networks of future systems will have the high bandwidth and low
latency required to support intensive, long distance computation along each dimension of
a three dimensional array code. However, in our opinion it is reasonable to expect that a
parallel computer system should deliver respectable performance on codes where an honest
e�ort has been made to reduce interprocessor data tra�c. As an illustration, consider the
following design for one iteration of a three dimensional scienti�c computation:

1. Perform numerical computations, using array constructs, along the �rst dimension,
which is mapped to be within local nodes.

2. Perform an array transposition, using the Fortran-90 RESHAPE operator, so that
the second dimension is now the �rst dimension.

3. Perform numerical computations along the �rst (i.e. the second) dimension.

4. Perform an array transposition so that the original third dimension is now the �rst
dimension.

5. Perform numerical computations along the �rst (i.e. the third) dimension.

6. Perform an array transposition back to the original array ordering.

One feature of the above design that is common to many three dimensional scienti�c
programs is that it features two dimensional parallelism. For a 100 � 100 � 100 problem,
this means 10,000 way parallelism. In our opinion, if a parallel computer system cannot
deliver respectable performance on a problem of this size with two dimensional parallelism,
but instead requires the programmer to also �nd parallelism in the third dimension, then
its usability for a broad range of real scienti�c problems will be severely limited.

9



We certainly do not claim that the above scheme is most e�cient for all three dimen-
sional scienti�c applications. Even for our CFD programs, other schemes are often more
e�cient. Nonetheless, it seems clear that if a parallel computer system cannot deliver re-
spectable performance on an application coded according to this design, then it is doubtful
that it will be able to deliver very much better performance on that application no matter
how it is coded. In short, we regard this as a minimum requirement of a usable parallel
computer.

While Fortran-90 appears to be a satisfactory means of expressing the main body of data
parallel, single program multiple data (SPMD) computations, it should be emphasized that
some important algorithms and applications do not �t well into this model. Some of these
that we have identi�ed include \chimera" schemes for unstructured grid computations,
computations over complicated geometries (such as complete aircraft con�gurations), and
domain decomposition schemes. Additional research is needed to �nd the best language
constructs for handling truly independent, asynchronous computations such as these.

Although a high level of sustained performance on real scienti�c applications, coded
with reasonable e�ort, is the most important consideration in a parallel computer, it is
clear from our experience that other aspects of these systems also need to be improved.
For example, if parallel computers are ever to be widely used in scienti�c computation
centers, then they must be capable of handling a fairly large number of interactive users
(say 50), especially during daytime hours when users are debugging and upgrading their
codes.

While it is possible to support multiple running jobs by means of time sharing, as TMC
has attempted to do, it still seems preferable for performance reasons (as mentioned above)
to be able to assign individual jobs to separate hardware subdomains. Such a hardware
design may also be an advantage in the future, when scientists tackle large multidisciplinary
applications. Whichever scheme is used, the system must provide reasonable security
against users storing data into nodes or memory locations that they do not own.

A related issue is mass storage. While both the current CM-2 and iPSC/860 systems
have moderately fast and high capacity mass storage systems, it is clearly important that
these features greatly improve with future systems. Also, it is essential that future par-
allel computer systems provide a high performance network interface (such as the HiPPI
interface) to allow high speed data communication to workstations and archival storage.

We recognize that the development of high performance, highly usable parallel computer
systems will be a challenging task. But we feel that without major improvements in both
hardware and software, there is a risk that scientists will eventually tire of struggling with
these systems and will return to conventional workstations and vector computers, and the
development of parallel computing technology will be greatly retarded.

Acknowledgment
The author wishes to acknowledge helpful comments and suggestions by Eric Barszcz,

Leo Dagum and Tom Lasinski of the NAS Applied Research Branch, by Rod Fatoohi, Horst
Simon, V. Venkatakrishnan and Sisira Weeratunga of Computer Sciences Corporation, and

10



by P. Frederickson and R. Schreiber of the Research Institute for Advanced Computer
Science (RIACS).

11



References

1. Bailey, D. H., Barton, J., Lasinski, T., and Simon, H., \The NAS Parallel Bench-
marks", Technical Report RNR-91-002, NAS Applied Research Branch, NASA Ames
Research Center, January 1991.

2. Bailey, D. H., et al., \The NAS Parallel Benchmarks", International Journal of Su-
percomputer Applications, 1991, to appear.

3. Bailey, D. H., et al., \Performance Results on the Intel Touchstone Gamma Proto-
type", Proceedings of the Fifth Distributed Memory Computing Conference, April
1990, p. 1236 { 1245.

4. Barszcz, E., \One Year with an iPSC/860", Technical Report RNR-91-001, NAS
Applied Research Branch, NASA Ames Research Center, January 1991.

5. Fortran 90, Draft International Standard, American National Standards Institute,
June 1990.

6. Hammond, S., and Barth, T. J., \An E�cient Massively Parallel Euler Solver for
Unstructured Grids", RIACS Technical Report 90-47, NASA Ames Research Center,
October 1990. Also published as AIAA paper 91-0441, 29th Aerospace Sciences
Meeting, January 1991.

7. Lee, K., \On the Floating Point Performance of the i860 Microprocessor", Technical
Report RNR-90-019, NAS Applied Research Branch, NASA Ames Research Center,
October 1990.

8. Levit, C., and Jespersen, D., \Numerical Simulation of Flow Past a Tapered Cylin-
der", Technical Report RNR-90-021, NAS Applied Research Branch, NASA Ames
Research Center, October 1990. Also published as AIAA paper 91-0751, 29th Aero-
space Sciences Meeting, January 1991.

9. McDonald, J. D., \Particle Simulation in a Multiprocessor Environment", Technical
Report RNR-91-003, NAS Applied Research Branch, NASA Ames Research Center,
January 1991.

10. Schreiber, R., \An Assessment of the Connection Machine", RIACS Technical Report
90-47, NASA Ames Research Center, June 1990.

11. Shadid, J. N., and Tuminaro, R. S., \IterativeMethods for Nonsymmetric Systems on
MIMD Machines", Proceedings of the Fifth SIAM Conference on Parallel Processing

for Scienti�c Computing, 1991, to appear.

12. Wray, A., personal communication.

12


